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SUMMARY 

Absolute and relative retentions observed in gas chromatography with serially 

coupled column pairs are significantly dependent on the sequence and relative lengths 
of the two columns on account of interplay between the capacity factors character- 
ising each column unit and the compressibility effect of the carrier gas on local ve- 
locities. The general theory is presented for coupled columns of any type and shown 
to allow calculation of all necessary data for optimisation of relative lengths on the 
basis of readily determined practical quantities. Earlier approaches due to Hildebrand 
and Reilley and Buys and Smuts are shown to represent special cases of the general 
theory. The procedure for determining the relative column lengths needed to optimise 
separations via the window analysis technique is explained and shown to be very 
simple in application. 

INTRODUCTION 

We have dealt with the special case of binary coupled open tube columns in 
a previous publication’ wherein we showed that it was possible to derive correction 
equations based solely on the basis of column section dimensions, i.e. length fractions 
and internal diameters, together with overall pressure drop. That approach was based 
on the Poiseuille equation which predicts for capillary columns a specific permeabil- 
ity, &, of 9/B, where r is the internal radius of the column. A similar approach could 
be employed for packed columns based on the semi-empirical KozenyCarman equa- 
tion2-3 which yields a specific permeability, &, for packed beds as follows 

Bo = 
@p 4 

180 (1 - E,,)~ 

where dP is the effective particle diameter and co is the interparticle porosity, i.e. the 
fraction of the column internal volume available to moving gas. However, difficulties 
in the measurement of dr and eo, coupled with the significant deviation of measured 
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permeability from the values predicted by this equation (e.g. refs. 4 and 5), effectively 
rule out routine usage of such an approach. To be of practical value any equation 
derived must be in terms of parameters that are easily and directly measurable with 
the individual column sections. We present such an empirical approach below. 

Darcy’s Law for fluid flow through a packed bed may be written in the form 

Bo dp 
u= --.- 

~3 dl 

where u is the local fluid velocity averaged over both interparticle and intraparticle 
free space, BO is the specific permeability of the bed, E is the porosity of the bed, i.e. 
the sum of both interparticle and intraparticle fractional voidages, q is the fluid vis- 
cosity, and dp/dl is the local pressure gradient. For a uniformly packed gas chro- 
matographic column, integration 
outlet, uo, is given by 

where pi and p. are the pressures at the column inlet and outlet, respectively, and L 
is the column length. Hildebrand and Reilley6 introduced the concept of resistance 
to gas flow, RF, defined by 

over column length shows that the velocity at the 

(3) 

It is also apparent that 

(4) 

(5) 

where p and ii correspond to the mean pressure and mean gas velocity within the 
column; U and p may, in turn, be replaced via 

ii = L/t* 

and 

P = P0ij 

where td is the retention time for a non-sorbed substance (dead time), and j is the 
James-Martin pressure correction factor. On rearrangement and substitution for j 
we may then obtain the following relationship 

(6) 
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Thus, a plot of td against (p? -pz)/(pf - ~8)’ should be a straight line passing 
through the origin and of slope (2/3)LRr. The determination of RF for a particular 
column is thus straightforward. It is also apparent from eqn. 4 that, for a uniform 
packing, RF is directly proportional to column length and is, alone, sufficient to 
describe gas flow as a function of pressure drop, thus eliminating any need of specific 
knowledge of either R,, or E. 

Consider now coupled column sections F followed by I3 (front and back), 
having lengths LF and LB, internal radii rr and rg, and porosities .z+ and Ed, respec- 
tively. Suppose pi, p and PO correspond to the pressures at the inlet, the junction and 
the outlet, respectively, and then let uri and u rO represent the gas velocities at the 
inlet and outlet of column F, and similarly UBi and, r&o for column B. If Fc is the 
volumetric flow measured at outlet pressure, and corrected to column temperature, 
then the volumetric flow at a point where the pressure equals some value p is given 
by Fcpo/p. Now, as mentioned earlier, the gas velocity at some point in the column, 
U, is defined as being averaged over the cross-section of all free space at that point 
(both inter- and intra-particle free space) so that II = p~F,/pnr~~, or 

poFc 
- p ?A GE 

A 
(7) 

where r and E represent the column internal radius and porosity at that point. It 
follows that 

Making appropriate substitutions from 

PUFO = (P? - P~)IRFF ad POuBO 

we find that 

g (pi” _ p2) = !h& ($2 - pg 

eqn. 4,, wherefrom 

= (P2 - pi!YRm 

(9) 

RFF and Rm referring to front and back column sections, respectively. 
The mobile phase volume of a column (strictly, the sum of inter- and intra- 

particle free space), V,, is relatively easily measured, being given by 

v, = jF, td (10) 

It is also evident that 

VM = xr2 EL 

so that eqn. 9 may now be written in the form 

(111 

[ 1 2 (Pi” - P") = $ 01” - p8) 
[ 1 

(12) 
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Hence, 

z _ d - l&‘: - (I~,BRFF/~FRFB)P~I 
P - 

1 - /FL1 - VMBRFF/ VMF&B] 
(13) 

where IF is the length fraction of section F, i.e. 1F = &/(I+ + LB). We are now in 
a position to calculate the pressure at the junction of a coupled packed column. 

Eqn. 13 is the general solution for coupled columns of any type and may for 
example be used when capillary column internal diameters are uncertain or unknown. 
The approach to optimisation described later is equally general. 

If we now define a parameter P as 

p = tdF/tdB (14) 

then it follows that the capacity factor k’ for a coupled column is given’ by 

k’ = [p;++;] 

Now, from eqn. 6 

which on substituting for (pi’ -pz) from eqn. 12 results in 

t 

and since 

then 

(15) 

(17) 

(19) 

Eqn. 19 reduces to the solution put forward by Hildebrand and Reilley6 only when 
VM/L is the same for the two column sections, i.e. when they have equal 9~. This is 
understandable since they neglected the effect on carrier velocity of a change in po- 
rosity at the junction (see eqn. 8). Buys and Smuts*, on the other hand, considered 
column sections not only of equal E but also of equal E/&, i.e. equal RF/L. 
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Having solved the problem of predicting solute retention for coupled columns 
in terms of readily measurable practical quantities, we may now turn to the imple- 
mentation of optimising the relative lengths of coupled columns required for given 
analyses. 

As for our approach for optimising coupled capillary lengths’, let us define a 
function,f, of true length fraction, l, such that 

k’ = fik; + fakb (20) 

where fF + fB = 1 and, as is evident from a consideration of eqn. 15, 

fr = P/(P+ 1) and P = fF/(l -fF) 

Rearrangement of eqn. 19 gives us a solution for p in terms of P, i.e. 

p3 = [“E$] 

where 

(21) 

and &r and VM are the respective quantities per unit length of each column and 
should be, ideally, constant. It follows, therefore, that y is also a constant, being 
independent of the individual column lengths comprising the whole column. Substi- 
tuting for P in eqn. 21 then gives the result 

p3 = Pi” - fF(P? - YPZ> 

1 - fFt1 - ?> 

Finally, from eqn. 12 it is possible to derive an equation for fr: 

(22) 

(23) 

As developed for coupled capillaries l, the route to true optimisation of length frac- 
tion is now apparent. Based on the linear relationships expressed by eqn. 20 a window 
diagramg-12 produced from capacity factor data for the various components of the 
mixture measured on individual column sections would indicate the optimum fF. 
Hence the pressure at the junction of such a coupled column operated at some overall 
pressure drop (pi - po) may be calculated via eqn. 22 since y is also known. The 
optimum true length fractions may then be determined by application of eqn. 23 and 
the total length required from a knowledge of the theoretical plate requirement. 
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